Table 2. Bond distances (Å) and angles (°)

C(2)-C(1)	1.548 (3)	C(13)-C(8)	1.409 (4)
C(5) - C(1)	1.547 (4)	C(10) - C(9)	1.397 (4)
C(17) - C(1)	1.504 (4)	C(14) - C(9)	1-490 (5
C(3) - C(2)	1.525 (3)	C(11) - C(10)	1.378 (5)
C(6) - C(2)	1.518 (4)	C(12) - C(11)	1.391 (5)
C(4) - C(3)	1.522 (4)	C(15) - C(11)	1.502 (5)
C(5)-C(4)	1.523 (5)	C(13) - C(12)	1.355 (4)
C(7) - C(6)	1.530 (3)	C(16) - C(13)	1.509 (4)
S(1)-C(6)	1.831 (2)	O(1) - C(17)	1.312 (3)
C(8)-S(1)	1.777 (3)	O(2)-C(17)	1.219 (3)
C(9)-C(8)	1.408 (4)		()
C(3) = C(1) = C(2)	102.1 (2)	C(13) - C(8) - C(9)	119-8 (2)
C(17) - C(1) - C(2)	113.3 (2)	C(10) - C(9) - C(8)	117.6 (3)
C(17) - C(1) - C(5)	110-2 (2)	C(14) - C(9) - C(8)	123.5 (3)
C(3) - C(2) - C(1)	104-6 (2)	C(14)-C(9)-C(10)	118-9 (3)
C(6) - C(2) - C(1)	115.0 (2)	C(11)-C(10)-C(9)	123.3 (3)
C(6)-C(2)-C(3)	116-0 (2)	C(12)-C(11)-C(10)	116-8 (3)
C(4)-C(3)-C(2)	107.3 (2)	C(15)-C(11)-C(10)	122.4 (3)
C(5)-C(4)-C(3)	106.5 (2)	C(12)-C(11)-C(15)	120.7 (3)
C(4) - C(5) - C(1)	105.8 (2)	C(11)-C(12)-C(13)	123-1 (3)
C(7) - C(6) - C(2)	113.0 (2)	C(8)–C(13)–C(12)	119-4 (3)
S(1)-C(6)-C(2)	108-1 (2)	C(8) - C(13) - C(16)	122-1 (3)
S(1)-C(6)-C(7)	111.4 (2)	C(12)-C(13)-C(16)	118-5 (3)
C(8) - S(1) - C(6)	101-5 (1)	C(1)-C(17)-O(1)	114.4 (2)
C(9)-C(8)-S(1)	119.9 (2)	C(1)–C(17)–O(2)	123-5 (2)
C(13)-C(8)-S(1)	120.4 (2)	O(1)-C(17)-O(2)	122-1 (2)

Related literature. The synthesis and crystal structure of the related 2-(1-phenylthioethyl)pent-3-ene-1carboxylic acid has been described by Michel *et al.* (1980).

References

- BEURSKENS, P. T., BOSMAN, W. P., DOESBURG, H. M., GOULD, R. O., VAN DEN HARK, TH. E. M., PRICK, P. A. J., NOORDIK, J. H., BEURSKENS, G. & PARTHASARATHI, V. (1981) DIRDIF. Tech. Rep. 1981/2. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- MICHEL, P., O'DONNELL, M., BINAME, R., HESBAIN-FRISQUE, A. M., GHOSEZ, L., DECLERCQ, J. P., GERMAIN, G., ARTE, E. & VAN MEERSSCHE, M. (1980). *Tetrahedron Lett.* 21, 2577–2580.
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting crystal and molecular structures. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1986). C42, 766-768

Structure of 2-(2-Chloro-3-pyridylthio)-3,5,6-trimethylphenol at 163 K

BY S. B. LARSON AND S. H. SIMONSEN

The Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA

G. E. MARTIN AND S. PUIG-TORRES

The Department of Medicinal Chemistry, College of Pharmacy, The University of Houston, Houston, Texas 77004, USA

AND K. SMITH

The Department of Chemistry, The University College of Swansea, Singleton Park, Swansea SA2 8PP, Wales

(Received 25 November 1985; accepted 3 January 1986)

Abstract. $C_{14}H_{14}ClNOS$, $M_r = 279.78$, monoclinic, b = 20.487 (3), $P2_1/c$, a = 7.5049 (10), c =8.6131 (10) Å, $\beta = 90.527$ (8)°, V = 1324.2 (3) Å³, $Z = 4, D_x(163 \text{ K}) = 1.403, D_m(295 \text{ K}) = 1.343 \text{ g cm}^{-3},$ λ (Mo Ka) = 0.71069 Å, μ = 4.242 cm⁻¹, F(000) = 584, R = 0.0407 for 2930 observed reflections. The molecule is a precursor to 6,7,9-trimethyl-4-azaphenoxathiin through displacement of the chloro substituent through release of HCl. The angle between the aromatic rings is $87.52(6)^\circ$; the C-S-C plane is nearly parallel to the pyridine plane [dihedral angle: 4.33 (9)°]. The O atom is 5.579 (2) Å from the Cl atom. Bond lengths are normal: C-S, 1.766, 1.774 Å:

C-Cl, 1.744 Å; aromatic C-C, 1.370-1.407 Å; other C-C, 1.506-1.511 Å; C-N, 1.319, 1.342 Å. The C-S-C angle is 102.98 (8)°.

Experimental. A summary of data collection and structural refinement is given in Table 1. Density measured by flotation. S and Cl positions obtained from *MULTAN78* (Main, Hull, Lessinger, Germain, Declercq & Woolfson, 1978). Electron density map afforded remaining non-H positions. Electron density difference map at R = 0.061 provided H positions as peaks of $0.57-0.84 \text{ e} \text{Å}^{-3}$. All positions and thermal parameters (isotropic H atoms) refined by full-matrix

0108-2701/86/060766-03\$01.50

© 1986 International Union of Crystallography

С

С

H

H H

Table 1. Crystallographic summary for C₁₄H₁₄CINOS

(A) Data collection $(163 \text{ K})^{1/3}$

Table 2. Positional parameters and U_{ea}/U for					
C ₁₄ H ₁₄ CINOS					

(1) Dutu vonvetion (100 11)	
Radiation	Μο Κα
Mode	ωscan
Scan range	Symmetrically over 1.0° about $K\alpha_{1,2}$ maximum
Background	Offset 1.0 and -1.0° in ω from $Ka_{1,2}$ maximum
Scan rate (° min ⁻¹)	2.5-5.0
Exposure time (h)	57.6
Stability analysis	
Computed s	a = 0.00051 (18)
1	b = -0.000005(3)
Correction range (on I)	0.987-1.000
2θ range (°)	4.0-60.0
Range in hkl, min.	0.012
max.	10,28,12
Total reflections measured	3852
Data-crystal dimensions (mm)	$0.45 \times 0.4 \times 0.2$
Absorption correction	None applied
(B) Structure refinement ⁱⁱⁱ	
Instability factor, p"	0.04
Reflections used ($F \ge 4\sigma_{\mu}$)	2930
No. of variables	219
Goodness of fit, S	1.396
R, wR	0.0407, 0.0467
R for all data	0.0609
Max. shift/e.s.d.	0.0044
Max. density in difference map (e Å ⁻³)	0.46 [between C(7) and C(8)]
Min. density in difference map $(e A^{-3})$	-0.23

Notes: (i) Unit-cell parameters were obtained by least-squares refinement of the setting angles of 45 reflections with $21 \cdot 3 < 2\theta < 30 \cdot 1^{\circ}$. (ii) Syntex $P2_1$ autodiffractometer with a graphite monochromator and a Syntex LT-1 inert-gas (N_2) low-temperature delivery system. Data reduction was carried out as described by Riley & Davis (1976). Crystal and instrument stability were monitored by re-measurement of four check reflections after every 96 reflections. As detailed by Henslee & Davis (1975), these data were analyzed to relate intensity to exposure time by the equation $y - 1 \cdot 0 + sx + tx^2$ where x is exposure time (h), y is fractional intensity relative to x = 0 and s and t are coefficients determined by least-squares fit. (iii) Function minimized was $\sum w(F_o - F_o)^2$, where $w = \sigma_F^{-2}$.

least squares (SHELX76, Sheldrick, 1976). Final parameters are in Table 2.* Scattering factors and anomalous-dispersion corrections for S, Cl, O, N and C from International Tables for X-ray Crystallography (1974); scattering factors for H from Stewart, Davidson & Simpson (1965). Least-squares-planes' program from Cordes (1983); others cited by Gadol & Davis (1982).

Fig. 1 shows the atom labeling, bond lengths and angles, Fig. 2 the molecular packing.

Related literature. For work on S-bridged aromatic rings, see: Puig-Torres, Martin, Larson & Simonsen (1984); Kimura, Simonsen, Caldwell & Martin (1981); Cody & Lehmann (1982); Korp, Bernal & Martin (1981); von Deuten & Klar (1981); Andreetti, Garbarczyk & Krolikowska (1981).

	x	У	Ζ	$U_{eq}^{*}/U(\dot{A}^2)$
21	0.77362 (6)	0.06476 (3)	0.02602 (7)	0.0402 (2)
	0-45736 (6)	0.12183 (2)	-0.16431 (5)	0.02809 (13)
)	0.1568 (2)	0-05394 (7)	-0.3396 (2)	0.0345 (4)
1	0.5536 (2)	0.04299 (8)	0.2527 (2)	0.0355 (5)
C(1)	0-4223 (2)	0.09530 (8)	0.0281(2)	0.0235 (5)
2(2)	0.5643 (2)	0.06791 (8)	0.1119 (2)	0.0263 (5)
C(3)	0.3942 (3)	0.04576 (11)	0.3218(2)	0.0384 (6)
C(4)	0.2463 (3)	0.07271 (11)	0.2528 (2)	0.0361 (6)
C(5)	0.2594 (3)	0.09789 (10)	0.1037 (2)	0.0309 (5)
C(6)	0.2482 (2)	0.15584 (9)	-0.2176(2)	0.0238 (5)
2(7)	0.1277 (2)	0.11785 (9)	-0.3051(2)	0.0250 (5)
C(8)	-0.0312 (2)	0.14531 (9)	-0.3636(2)	0.0259 (5)
C(9)	-0·0678 (2)	0.21070 (9)	-0.3300(2)	0.0269 (5)
C(10)	0.0514 (2)	0.24710 (9)	-0.2398 (2)	0.0275 (5)
C(11)	0.2102 (2)	0.22142 (9)	-0.1834 (2)	0.0253 (5)
C(12)	-0.1574 (3)	0.10434 (12)	-0.4603 (3)	0.0360 (6)
2(13)	-0·2354 (3)	0.24264 (12)	-0·3902 (3)	0.0366 (6)
C(14)	0.3364 (3)	0.26290(11)	-0.0890 (3)	0.0340 (6)
I	0.239 (4)	0.043 (2)	-0.303 (4)	0.066 (10)
I(3)	0.392 (3)	0.0288 (11)	0.420 (3)	0.042 (6)
l(4)	0-143 (3)	0.0734 (12)	0-306 (3)	0.049 (7)
I(5)	0.154 (3)	0-1163 (11)	0.049 (2)	0.035 (6)
I(10)	0.019 (3)	0.2913 (11)	-0·213 (3)	0.036 (6)
I(12)A	−0 ·178 (4)	0.1274 (14)	−0 ·567 (3)	0.065 (8)
I(12 <i>B</i>	-0·266 (4)	0-0956 (15)	-0-409 (4)	0.072 (9)
I(12C	−0 ·112 (4)	0.0613 (14)	-0.481 (3)	0.068 (9)
I(13)A	<i>−</i> 0·334 (4)	0-2201 (13)	-0.354 (3)	0.054 (7)
I(13 <i>B</i>	-0.239 (3)	0-2460 (12)	-0.499 (3)	0.049 (7)
I(13)C	-0·249 (4)	0.289 (2)	-0.349 (4)	0.078 (10)
I(14)A	0.374 (3)	0.2408 (13)	0.006 (3)	0.059 (8)
I(14) <i>B</i>	0.276 (4)	0.3039 (14)	-0.056 (3)	0.059 (8)
I(14)C	0.434 (4)	0.271 (2)	-0.148(4)	0.082 (10)

* For non-H atoms, the U value is U_{eq} , calculated as $U_{eq} = \frac{1}{2} \sum_{i} J_{ij} U_{ij} a_i^* a_i^* A_{ij}$ where A_{ij} is the dot product of the *i*th and *j*th direct-space unit-cell vectors.

Fig. 1. (a) View of the molecule showing atom labeling and bond lengths (Å). Ellipsoids scaled to 50% probability level. (b) Bond angles (°); e.s.d.'s are $0.2-0.3^{\circ}$.

^{*} Tables of anisotropic thermal parameters, bond lengths and angles involving H atoms, torsion angles, least-squares planes and structure-factor amplitudes have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 42751 (25 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. Molecular packing as viewed along the c axis. Centrosymmetric pairs are joined through weak hydrogen bonds [N...H, 2.39 (3) Å]. All other intermolecular contacts are greater than the sum of the relevant van der Waals radii.

The authors wish to thank the Robert A. Welch Foundation for support of this work, grants No. F-017 to SHS and No. E-792 to GEM, and also the North Atlantic Treaty Organization, NATO grant No. 019.81 to GEM and KS.

References

- ANDREETTI, G. D., GARBARCZYK, J. & KROLIKOWSKA, M. (1981). Cryst. Struct. Commun. 10, 789–792.
- CODY, V. & LEHMANN, P. A. (1982). Cryst. Struct. Commun. 11, 1671-1675.
- CORDES, A. W. (1983). Personal communication.
- DEUTEN, K. VON & KLAR, G. (1981). Cryst. Struct. Commun. 10, 231-238.
- GADOL, S. M. & DAVIS, R. E. (1982). Organometallics, 1, 1607-1613.
- HENSLEE, W. H. & DAVIS, R. E. (1975). Acta Cryst. B31, 1511-1519.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- KIMURA, M., SIMONSEN, S. H., CALDWELL, S. R. & MARTIN, G. E. (1981). J. Heterocycl. Chem. 18, 469–473.
- KORP, J. D., BERNAL, I. & MARTIN, G. E. (1981). J. Cryst. Mol. Struct. 11, 11-25.
- MAIN, P., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PUIG-TORRES, S., MARTIN, G. E., LARSON, S. B. & SIMONSEN, S. H. (1984). J. Heterocycl. Chem. 21, 155–159.
- RILEY, P. E. & DAVIS, R. E. (1976). Acta Cryst. B32, 381-386.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.